|
Stratification has several usages in mathematics. ==In mathematical logic== In mathematical logic, stratification is any consistent assignment of numbers to predicate symbols guaranteeing that a unique formal interpretation of a logical theory exists. Specifically, we say that a set of clauses of the form is stratified if and only if there is a stratification assignment S that fulfills the following conditions: # If a predicate P is positively derived from a predicate Q (i.e., P is the head of a rule, and Q occurs positively in the body of the same rule), then the stratification number of P must be greater than or equal to the stratification number of Q, in short . # If a predicate P is derived from a negated predicate Q (i.e., P is the head of a rule, and Q occurs negatively in the body of the same rule), then the stratification number of P must be greater than the stratification number of Q, in short . The notion of stratified negation leads to a very effective operational semantics for stratified programs in terms of the stratified least fixpoint, that is obtained by iteratively applying the fixpoint operator to each ''stratum'' of the program, from the lowest one up. Stratification is not only useful for guaranteeing unique interpretation of Horn clause theories. It has also been used by W.V. Quine (1937) to address Russell's paradox, which undermined Frege's central work ''Grundgesetze der Arithmetik'' (1902). 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Stratification (mathematics)」の詳細全文を読む スポンサード リンク
|